Mapping of cardiac electrical activation with electromechanical wave imaging: an in silico-in vivo reciprocity study.

نویسندگان

  • Jean Provost
  • Viatcheslav Gurev
  • Natalia Trayanova
  • Elisa E Konofagou
چکیده

BACKGROUND Electromechanical wave imaging (EWI) is an entirely noninvasive, ultrasound-based imaging method capable of mapping the electromechanical activation sequence of the ventricles in vivo. Given the broad accessibility of ultrasound scanners in the clinic, the application of EWI could constitute a flexible surrogate for the 3-dimensional electrical activation. OBJECTIVE The purpose of this report is to reproduce the electromechanical wave (EW) using an anatomically realistic electromechanical model, and establish the capability of EWI to map the electrical activation sequence in vivo when pacing from different locations. METHODS EWI was performed in 1 canine during pacing from 3 different sites. A high-resolution dynamic model of coupled cardiac electromechanics of the canine heart was used to predict the experimentally recorded electromechanical wave. The simulated 3-dimensional electrical activation sequence was then compared with the experimental EW. RESULTS The electrical activation sequence and the EW were highly correlated for all pacing sites. The relationship between the electrical activation and the EW onset was found to be linear, with a slope of 1.01 to 1.17 for different pacing schemes and imaging angles. CONCLUSION The accurate reproduction of the EW in simulations indicates that the model framework is capable of accurately representing the cardiac electromechanics and thus testing new hypotheses. The one-to-one correspondence between the electrical activation and the EW sequences indicates that EWI could be used to map the cardiac electrical activity. This opens the door for further exploration of the technique in assisting in the early detection, diagnosis, and treatment monitoring of rhythm dysfunction.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Electromechanical wave imaging (EWI) validation in all four cardiac chambers with 3D electroanatomic mapping in canines in vivo.

Characterization and mapping of arrhythmias is currently performed through invasive insertion and manipulation of cardiac catheters. Electromechanical wave imaging (EWI) is a non-invasive ultrasound-based imaging technique, which tracks the electromechanical activation that immediately follows electrical activation. Electrical and electromechanical activations were previously found to be linear...

متن کامل

Electromechanical wave imaging for noninvasive mapping of the 3D electrical activation sequence in canines and humans in vivo.

Cardiovascular diseases rank as America's primary killer, claiming the lives of over 41% of more than 2.4 million Americans. One of the main reasons for this high death toll is the severe lack of effective imaging techniques for screening, early detection and localization of an abnormality detected on the electrocardiogram (ECG). The two most widely used imaging techniques in the clinic are CT ...

متن کامل

A clinical feasibility study of atrial and ventricular electromechanical wave imaging.

BACKGROUND Cardiac resynchronization therapy (CRT) and atrial ablation procedures currently lack a noninvasive imaging modality for reliable treatment planning and monitoring. Electromechanical wave imaging (EWI) is an ultrasound-based method that has previously been shown to be capable of noninvasively and transmurally mapping the activation sequence of the heart in animal studies by estimatin...

متن کامل

Imaging the electromechanical activity of the heart in vivo.

Cardiac conduction abnormalities remain a major cause of death and disability worldwide. However, as of today, there is no standard clinical imaging modality that can noninvasively provide maps of the electrical activation. In this paper, electromechanical wave imaging (EWI), a novel ultrasound-based imaging method, is shown to be capable of mapping the electromechanics of all four cardiac cham...

متن کامل

Electromechanical wave imaging for arrhythmias.

Electromechanical wave imaging (EWI) is a novel ultrasound-based imaging modality for mapping of the electromechanical wave (EW), i.e. the transient deformations occurring in immediate response to the electrical activation. The correlation between the EW and the electrical activation has been established in prior studies. However, the methods used previously to map the EW required the reconstru...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Heart rhythm

دوره 8 5  شماره 

صفحات  -

تاریخ انتشار 2011